侯健(教授)

作者:审核人:责任编辑:发布时间:2025-11-02浏览次数:59

姓名:

侯健

单位:

油气藏工程研究所

最高学历/学位:

博士

职称:

教授

学科:

油气田开发工程学科,海洋油气工程学科,石油与天然气工程学科

所学专业:

油气田开发工程

电子邮箱:

houjian@upc.edu.cn

联系电话:

0532-86983873

地址邮编:

山东省青岛市黄岛区长江西路66号石油工程学院,266580

学习与工作经历

1989.9-1993.6,中国石油大学(华东),油藏工程学士;
1993.9-1996.6,中国石油大学(华东),油气田开发工程硕士;
1999.9-2002.6,中国石油大学(华东),油气田开发工程博士。

研究方向

深层油气流动调控与有效开采

主讲课程

《渗流力学》、《注蒸汽热力采油》、《油藏数值模拟基础》、《石油工业概论》

学术兼职

国家自然科学基金、国家科技部项目及奖励评审专家
《石油科学通报》副主编、《渗流力学进展》、《中国石油大学学报》、《钻采工艺》编委

指导研究生

在读或毕业研究生90余名
博士招生专业:
油气田开发工程(学术学位博士)
01 油气渗流理论与方法
02 油气田开发理论与方法
04 化学法提高采收率理论与技术
05 油气田信息化与智能开发方法
石油与天然气工程(专业学位博士)
02 油气田开发工程
硕士招生专业:
石油与天然气工程(学术、专业硕士)
03 渗流理论与油气藏开发工程
06 油气工程信息与智能技术
07 非常规地质能源开发工程理论与技术
08 地下储碳储能理论与技术

承担科研课题

承担国家自然科学基金重点基金、国家重点研发计划、国家油气重大专项、国家863计划等项目50余项,代表性项目如下:
[1] 山东省泰山学者团队项目,油气藏渗流力学与提高采收率科技创新团队、2025/1-2029/12、主持;
[2] 国家自然科学基金重点项目,52334002、天然气水合物藏电场井间生热辅助降压高效开发方法的基础研究、2024/01-2028/12,主持;
[3] 国家自然科学基金联合基金重点项目,U21B2070、柔性胶囊聚合物驱提高采收率的基础理论研究、2022/01-2025/02、主持;
[4] 国家重点研发计划课题,2018YFAO702404、稠油化学复合冷采渗流机理及油藏数值模拟方法、2019/09-2024/08、主持;
[5] 中石油重大科技项目课题,ZD2019-184-002、天然气水合物藏开采机理及储层改造辅助开发方法、2019/01-2023/12 、主持;
[6] 国家杰出青年基金,51625403、油气藏渗流力学与提高采收率方法、2017/01-2021/12、主持;
[7] 国家自然科学基金面上项目,51574269、预交联凝胶颗粒分散体系微观渗流的LBM-DEM模拟方法研究、主持;
[8] 国家油气重大专项专题,2016ZX05011-003-008、化学驱动态预警方法及油藏工程研究、2016/01-2020/12、主持;
[9] 国家油气重大专项专题,2016ZX05025-003-006、海上油田全过程提高采收率模式与优化研究、2016/01-2020/12、主持;
[10] 国家自然科学基金面上项目,10972237、泡沫复合驱油体系在多孔介质中的稳定特征及渗流机制研究、2010/01-2012/12、主持;
[11] 国家自然科学基金面上项目,10772200、非牛顿流体在多孔介质中微观渗流的实验和模拟研究、2008/01-2010/12、主持;
[12] 国家自然科学基金青年科学基金项目,10302021、聚合物驱微观渗流机理及剩余油启动临界参数研究、2004/01-2004/12、主持;
[13] 国家油气重大专项专题,2011ZX05011-004-008HZ、化学驱效果评价方法研究、2011/01-2015/12、主持;
[14] 国家油气重大专项专题,2011ZX05024-004-13、海上油田提高采收率潜力评价及开发方式优化技术研究、2011/01-2015/12、主持;
[15] 国家油气重大专项专题,2008ZX05011-006-012、高温高盐油藏化学驱效果评价及定量表征技术研究、2008/06-2010/12、主持;
[16] 中国博士后科学基金特别资助项目,200902180、储层参数协同时变对开发规律影响的多尺度模拟研究、2009/09-2010/10、主持;
[17] 中国博士后科学基金面上一等资助项目,20080440058、无碱高效泡沫复合驱油体系在多孔介质中流动机制研究、2008/12-2009/12、主持;
[18] 国家“863”项目,2007AA06Z216、高温高盐油藏无碱高效泡沫复合驱油体系研究、2007/12-2010/12、副组长;
[19] 教育部新世纪优秀人才支持计划,NCET-11-0734、2012/01-2014/12、主持;
[20] 山东省自然科学杰出青年基金项目,JQ201115、微观渗流实验与模拟、 2011/07-2014/07、主持。

获奖情况

[1] 胜利油田边际稠油高效开发技术与应用(国家科学技术进步奖二等奖),中华人民共和国,2011,6/10.
[2] 深层稠油油藏多元流体辅助高压蒸汽驱关键技术及应用(中国石油和化学工业协会科技进步一等奖),中国石油和化学工业协会,2021,1/15.
[3] 化学驱渗流理论与开发技术及其在高含水油田的工业化应用(中国石油和化学工业联合会科学技术一等奖),中国石油和化学工业联合会,2013,1/15.
[4] 高粘油藏化学驱大幅度提高石油采收率关键技术及应用(中国石油和化学工业联合会科技进步一等奖),中国石油和化学工业联合会,2023, 1/15.
[5] 非均相复合驱大幅度提高石油采收率的理论与实践(中国石油和化学工业联合会技术发明一等奖),中国石油和化学工业协会,2017,5/10.
[6] 聚驱后地层残留聚合物再利用提高采收率技术研究与应用(山东省科技进步一等奖),山东省人民政府,2009,5/12.

荣誉称号

[1] 国家杰出青年基金获得者
[2] 国家“万人计划”科技创新领军人才
[3] 中华人民共和国国务院政府特殊津贴
[4] 科技部中青年科技创新领军人才
[5] 教育部新世纪优秀人才支持计划入选者
[6] 山东省优秀研究生指导教师
[7] 山东省有突出贡献中青年专家专家
[8] 山东省自然科学杰出青年基金获得者
[9] 山东省泰山学者
[10] 孙越崎青年科技奖获得者

著作

[1] 提高原油采收率潜力预测方法(专著),中国石油大学出版社,2007.9.
[2] 油气层渗流力学(国家级规划教材),中国石油大学出版社,2009.4.
[3] 热力采油技术(高等学校教材),中国石油大学出版社,2013.5.
[4] 化学驱油藏工程方法(专著),科学出版社,2024.6.

论文

发表论文200余篇,近年代表性论文如下:
[1] 侯健*, 刘永盛, 韦贝, 曹绪龙, 孙建芳, 杜庆军, 宋考平, 元福卿, 孙鹏霄, 季岩峰, 赵方剑, 刘瑞欣.(2024). 胶囊聚合物驱提高采收率方法.石油勘探与开发, 51(05), 1092-1100.
[2] Liu, Y., Wei, B., Cao, X., Song, K., Yuan, F., Xue, Y., Wang, J., Tang, L., Liu, Y., Wei, Z., Zhang, J., & Hou J.* (2024). Visualization Experimental Study on In-Situ Triggered Displacement Mechanism by Microencapsulated Polymer in Porous Media. SPE J. 29, 4305–4318.
[3] 赵二猛, 侯健*, 刘永革, 白雅洁. (2023). 海水对流增强天然气水合物藏低频电场加热效率模拟.石油学报, 44(04), 672-683.
[4] Xiong, Z., Du Q., Hou, J.*, Liu, R., Liu, Y., Zheng, H., & Zhang Y. (2025). Numerical simulation of cyclic hydrogen storage in depleted gas reservoirs: considering microbial growth and hydrogen consumption. Energy, 328, 136543.
[5] Xiong, Z., Hou J.*, Du, Q., Chen, Z., Lu, X., Liu, Y., Wei, B., & Lu, T. (2025). A comprehensive review of H2 physical behavior and H2-rock-microbial interactions in underground hydrogen storage. Energy, 326, 136226.
[6] Liu, Y., Li, G., Chen, J., Bai Y., Hou, J.*, Xu, H., Zhao, E., Chen, Z., He J., Zhang, L., Cen, X., & Chuvilin, E. (2023). Numerical simulation of hydraulic fracturing-assisted depressurization development in hydrate bearing layers based on discrete fracture models. Energy, 263, 126146.
[7] 刘永革, 张旭, 侯健*, CLARKE Matthew, 郭天魁, 杜庆军, 刘建新, 白雅洁, 陈掌星, 徐鸿志, 赵二猛, 纪云开, 陈立涛.(2024)天然气水合物藏径向井充填辅助降压开发模拟方法及产能变化规律研究.中国科学:物理学力学天文学, 54(12), 123-139.
[8] An, Z., Zhou, K.*, Wu, D., & Hou, J.* (2023). Production characteristics and displacement mechanisms of infilling polymer-surfactant-preformed particle gel flooding in post-polymer flooding reservoirs: A review of practice in Ng3 block of Gudao Oilfield. Petroleum Science, 20(4), 2354-2371.
[9] Wei, B., Qiao, R., Hou J.*, Wu, Z., Sun J., Zhang, Y., Qiang, X., & Zhao E. (2024). Multiphase production prediction of volume fracturing horizontal wells in tight oil reservoir during cyclic water injection. Physics of Fluids, 37, 013304.
[10] Zhao, D., Hou, J.*, Wei, B., Liu, H., Du, Q., Zhang, Y., & Sun Z. (2023). Fast prediction method of displacement front in heterogeneous porous media using deep learning and orthogonal design. Physics of Fluids, 35 (8), 083312.
[11] Bai, Y., Clarke, M., Hou J.*, Liu, Y., Lu, N., Zhao, E., Xu, H., Chen, L., & Guo, T. (2023). Study on improved efficiency of induced fracture in gas hydrate reservoir depressurization development. Energy, 278, 127853.
[12] Du, Q., Shen, J., Xue, Y., Yang, H., Wang, Q., Liu, R., Lu, X., Lu, T., Hou, J.*, & Zhao, X. (2025). Pore-scale investigation of supercritical multi-component thermal fluid flooding in deep heavy oil reservoirs. Geoenergy Science and Engineering. 247, 213734,
[13] Chen, Y., Zhou, K.*, An, Z., Du, Q., Hou, J.*, & Wei, Z. (2024). Phased optimization of multi-thermal fluid flooding for enhanced oil recovery. Geoenergy Science and Engineering, 244, 213395.
[14] Chen, Q., Hou J.*, Wei, B., Gong, R., Du, Q., & Liu, Y. (2025). Study on CO2 storage suitability evaluation and storage potential prediction method in site-level saline aquifer: A case study of X saline aquifer block in Enping 15-1 oilfield. Geoenergy Science and Engineering, 246, 213598.
[15] Zhang, W., Hou, J.*, Liu, Y., Zhou, K., Li, Z., & Du, Q. (2022). Determination of relative permeability curve under combined effect of polymer and surfactant. Journal of Petroleum Science and Engineering, 215, 110588.
[16] Zhao, D., Hou, J.*, Sun, J., Shi, L., Du, Q., & Li, J. (2022). Interwell connectivity inversion method of steam flooding: Based on an analytical model and genetic algorithm. Journal of Petroleum Science and Engineering, 110641.
[17] Ji, Y., Kneafsey, T. J., Hou, J.*, Zhao, J., Liu, C., Guo, T., ... & Bai, Y. (2022). Relative permeability of gas and water flow in hydrate-bearing porous media: A micro-scale study by lattice Boltzmann simulation. Fuel, 321, 124013.
[18] Wu, D., Zhou, K., Zhao, F., Lu, X., An, Z., Liu, S., & Hou, J*. (2022). Determination of Permeability Contrast Limits for Applying Polymer Solutions and Viscoelastic Particle Suspensions in Heterogeneous Reservoirs. Energy & Fuels, 36(14), 7495-7506.
[19] Zhai, M., Zhou, K., Sun, Z., Du, Q., Wei, Y., & Hou, J*. (2022). Study on the matching relationship between dispersed droplet size in O/W emulsion and reservoir permeability. International Journal of Multiphase Flow, 150, 104025.
[20] Zhao, E., Hou, J.*, Ji, Y., Liu, Y., & Bai, Y. (2022). Energy recovery behavior of low-frequency electric heating assisted depressurization in Class 1 hydrate deposits. Fuel, 309, 122185.
[21] Bai, Y., Hou, J.*, Liu, Y., Zhao, D., Bing, S., Xiao, W., & Zhao, W. (2022). Energy-consumption calculation and optimization method of integrated system of injection-reservoir-production in high water-cut reservoir. Energy, 239, 121961.
[22] An, Z., Zhou, K., Hou, J.*, Wu, D., & Pan, Y. (2022). Accelerating reservoir production optimization by combining reservoir engineering method with particle swarm optimization algorithm. Journal of Petroleum Science and Engineering, 208, 109692.
[23] Zhang, B., Jiang, R., Sun, B., Lu, N., Hou, J.*, Bai, Y., ... & Liu, Y. (2022). Establishment of the productivity prediction method of Class III gas hydrate developed by depressurization and horizontal well based on production performance and inflow relationship. Fuel, 308, 122006.
[24] Zhai, M., Du, Q., Wu, G., Sun, J., Sha, Y., & Hou, J*. (2022). Potential of a new water-soluble agent for enhancing heavy oil recovery: A pore-scale investigation. Journal of Petroleum Science and Engineering, 208, 109646.
[25] Zhang, W., Hou, J.*, Liu, Y., Du, Q., Cao, W., & Zhou, K. (2021). Study on the effect of polymer viscosity and Darcy velocity on relative permeability curves in polymer flooding. Journal of Petroleum Science and Engineering, 200, 108393.
[26] Wang, H., Wei, B., Sun, Z., Du, Q., & Hou, J*. (2021). Microfluidic study of heavy oil emulsification on solid surface. Chemical Engineering Science, 246, 117009.
[27] Ji, Y., Hou, J.*, Zhao, E., Liu, C., Guo, T., Liu, Y., ... & Bai, Y. (2021). Pore-scale study on methane hydrate formation and dissociation in a heterogeneous micromodel. Journal of Natural Gas Science and Engineering, 95, 104230.
[28] Zhao, E., Hou, J.*, Du, Q., Liu, Y., Ji, Y., & Bai, Y. (2021). Numerical modeling of gas production from methane hydrate deposits using low-frequency electrical heating assisted depressurization method. Fuel, 290, 120075.
[29] Zhao, E., Hou, J.*, Ji, Y., Liu, Y., & Bai, Y. (2021). Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells. Energy, 233, 121137.
[30] Liu, Y., Hou, J.*, Chen, Z., Bai, Y., Su, H., Zhao, E., & Li, G. (2021). Enhancing hot water flooding in hydrate bearing layers through a novel staged production method. Energy, 217, 119319.
[31] Wu, D., Zhou, K., Hou, J.*, An, Z., Zhai, M., & Liu, W. (2021). Review of experimental and simulation studies of enhanced oil recovery using viscoelastic particles. Journal of Dispersion Science and Technology, 42(7), 956-969.
[32] Wei, B., Hou, J.*, Sukop, M. C., Du, Q., & Wang, H. (2020). Flow behaviors of emulsions in constricted capillaries: A lattice Boltzmann simulation study. Chemical Engineering Science, 227, 115925.
[33] Wei, B., Hou, J.*, Sukop, M. C., & Du, Q. (2020). Enhancing oil recovery using an immiscible slug: Lattice Boltzmann simulation by three-phase pseudopotential model. Physics of Fluids, 32(9), 092105.
[34] Liu, Y., Hou, J.*, Chen, Z., Su, H., Zhao, E., & Li, G. (2020). A novel natural gas hydrate recovery approach by delivering geothermal energy through dumpflooding. Energy Conversion and Management, 209, 112623.
[35] Ji, Y., Hou, J.*, Zhao, E., Lu, N., Bai, Y., Zhou, K., & Liu, Y. (2020). Study on the effects of heterogeneous distribution of methane hydrate on permeability of porous media using low‐field NMR technique. Journal of Geophysical Research: Solid Earth, 125(2), e2019JB018572.
[36] Bai, Y., Hou, J.*, Liu, Y., Lu, N., Zhao, E., & Ji, Y. (2020). Interbed patterns division and its effect on production performance for class I hydrate deposit with mudstone interbed. Energy, 211, 118666.
[37] Wu, D., Zhou, K., Hou, J.*, An, Z., Zhai, M., & Liu, W. (2020). Experimental study on combining heterogeneous phase composite flooding and streamline adjustment to improve oil recovery in heterogeneous reservoirs. Journal of Petroleum Science and Engineering, 194, 107478.
[38] Zhao, E., Hou, J.*, Liu, Y., Ji, Y., Liu, W., Lu, N., & Bai, Y. (2020). Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea. Energy, 213, 118826.
[39] Liu, J., Yan, Y., Zhang, J., Xu, J., Chen, G., & Hou, J.* (2019). Theoretical investigation of storage capacity of hydrocarbon gas in sH hydrate. Chemical Physics, 525, 110393.
[40] Zhou, K., Hou, J.*, Sun, Q., Guo, L., Du, Q., & Liu, Y. (2019). Study on the flow resistance of the dispersion system of deformable preformed particle gel in porous media using LBM-DEM-IMB method. Journal of Dispersion Science and Technology, 40(10), 1523-1530.
[41] Liu, Y., Hou, J.*, Zhao, H., Liu, X., & Xia, Z. (2019). Numerical simulation of simultaneous exploitation of geothermal energy and natural gas hydrates by water injection into a geothermal heat exchange well. Renewable and Sustainable Energy Reviews, 109, 467-481.
[42] Hou, J., Liu, J., Xu, J., Zhong, J., Yan, Y., & Zhang, J. (2019). Two-dimensional methane hydrate: Plum-pudding structure and sandwich structure. Chemical Physics Letters, 725, 38-44.
[43] Du, Q. J., Pan, G. M., Hou, J.*, Guo, L. L., Wang, R. R., Xia, Z. Z., & Zhou, K. (2019). Study of the mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery for post-polymer-flooded reservoirs. Petroleum Science, 16(3), 606-618.
[44] Wei, B., Hou, J.*, Sukop, M. C., & Liu, H. (2019). Pore scale study of amphiphilic fluids flow using the Lattice Boltzmann model. International Journal of Heat and Mass Transfer, 139, 725-735.
[45] Zhou, P., Hou, J.*, Yan, Y., Wang, J., & Chen, W. (2019). Effect of aggregation and adsorption behavior on the flow resistance of surfactant fluid on smooth and rough surfaces: a many-body dissipative particle dynamics study. Langmuir, 35(24), 8110-8120.
[46] Zhou, P., Wang, J., Wang, M., Hou, J.*, Lu, J. R., & Xu, H. (2019). Amino acid conformations control the morphological and chiral features of the self-assembled peptide nanostructures: Young investigators perspective. Journal of Colloid and Interface Science, 548, 244-254.
[47] Liu, Y., Ma, X., & Hou, J.* (2019). Comparing the Effectiveness of SO2 with CO2 for Replacing Hydrocarbons from Nanopores. Energy & Fuels, 33(6), 5200-5207.
[48] Liu, Y., Liu, X., Hou, J.*, Li, H. A., Liu, Y., & Chen, Z. (2019). Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery. Energy, 181, 853-867.
[49] Liu, Y., & Hou, J. (2019). Investigation on the potential relationships between geophysical properties and CH4 adsorption in a typical shale gas reservoir. Energy & Fuels, 33(9), 8354-8362.
[50] Lu, N., Hou, J.*, Liu, Y., Barrufet, M. A., Bai, Y., Ji, Y., ... & Zhou, K. (2019). Revised inflow performance relationship for productivity prediction and energy evaluation based on stage characteristics of Class III methane hydrate deposits. Energy, 189, 116211.
[51] Hou, J., Zhao, E., Liu, Y., Ji, Y., Lu, N., Liu, Y., ... & Bai, Y. (2019). Pressure-transient behavior in class III hydrate reservoirs. Energy, 170, 391-402.
[52] 侯健,吴德君,韦贝,周康,巩亮,曹绪龙,郭兰磊.非均相复合驱非连续相渗流特征及提高驱油效率机制[J].中国石油大学学报(自然科学版),2019,43(05):128-135.
[53] Ji, Y., Hou, J.*, Cui, G., Lu, N., Zhao, E., Liu, Y., & Du, Q. (2019). Experimental study on methane hydrate formation in a partially saturated sandstone using low-field NMR technique. Fuel, 251, 82-90.
[54] Du, Q., Hou, J.*, Zhao, F., Zhou, K., Liu, W., & Liu, Y. (2019). A new organic fiber composite gel as a plugging agent for assisting CO2 huff and puff in water channeling reservoirs. Journal of Petroleum Science and Engineering, 179, 70-79.
[55] Liu, Y., Hou, J., Liu, L., Zhou, K., Zhang, Y., Dai, T., ... & Cao, W. (2018). An inversion method of relative permeability curves in polymer flooding considering physical properties of polymer. SPE Journal, 23(05), 1929-1943.
[56] Liu, Y., Bai, Y., Xia, Z., & Hou, J.* (2018). Parameter optimization of Depressurization to Hot Water Flooding in heterogeneous hydrate bearing layers based on the particle swarm optimization algorithm. Journal of Natural Gas Science and Engineering, 53, 403-415.
[57] Zhou, P., Hou, J.*, Yan, Y., & Wang, J. (2018). The effect of surfactant adsorption on surface wettability and flow resistance in slit nanopore: A molecular dynamics study. Journal of colloid and interface science, 513, 379-388.
[58] Wei, B., Huang, H., Hou, J.*, & Sukop, M. C. (2018). Study on the meniscus-induced motion of droplets and bubbles by a three-phase Lattice Boltzmann model. Chemical Engineering Science, 176, 35-49.
[59] Lu, N., Hou, J.*, Liu, Y., Barrufet, M. A., Ji, Y., Xia, Z., & Xu, B. (2018). Stage analysis and production evaluation for class III gas hydrate deposit by depressurization. Energy, 165, 501-511.
[60] Hou, J., Wei, B., Zhou, K., & Du, Q. (2018). Representing pore shapes by appropriate polygons in pore network models. Journal of Porous Media, 21(4).
[61] Zhou, K., Hou, J.*, Sun, Q., Guo, L., Bing, S., Du, Q., & Yao, C. (2018). A study on particle suspension flow and permeability impairment in porous media using LBM–DEM–IMB simulation method. Transport in Porous Media, 124(3), 681-698.
[62] Wei, B., Hou, J.*, Huang, H., Sukop, M. C., Liu, Y., & Zhou, K. (2018). Entry pressure for the rough capillary: Semi-analytical model, Lattice Boltzmann simulation. Journal of Hydrology, 562, 17-29.
[63] Liu, Y., Hou, J.*, Zhao, H., Liu, X., & Xia, Z. (2018). A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy, 144, 265-278.
[64] Hou, J., Ji, Y., Zhou, K., Liu, Y., & Wei, B. (2018). Effect of hydrate on permeability in porous media: Pore-scale micro-simulation. International Journal of Heat and Mass Transfer, 126, 416-424.

专利

授权发明专利60余项,近年代表性专利如下:
[1] 侯健; 周康; 杜庆军; 等. A chemical flooding method for balanced displacement of heterogeneous oil reservoir, US12055022B2.
[2] 侯健; 韦贝; 刘永盛; 等. Encapsulated polymer flooding method and system for enhancing oil recovery, US11912932(B1).
[3] 侯健; 赵东; 韦贝; 等. 一种基于微观渗流模拟和机器学习的粘性指进快速预测方法, ZL202210809532.4.
[4] 侯健; 秦全灵; 周康; 等. 乳状液非线性渗流启动压力梯度的测试方法, ZL202410208989.9.
[5] 侯健; 赵二猛; 刘永革; 等. 一种低频电场加热开采天然气水合物藏的数值模拟方法, ZL202010992536.1.
[6] 侯健; 韦贝; 刘永盛; 胶囊聚合物驱提高采收率的方法和系统, ZL202310166917.8.
[7] 侯健; 刘帅; 周康; 等. 一种考虑全过程优化断块油藏水驱采收率预测方法及系统, ZL202211384610.7.
[8] 侯健; 周康; 杜庆军; 等. 一种注采优化协同化学驱实现原油均衡驱替的方法, ZL202110318238.9.
[9] 侯健; 纪云开; 杜庆军 等. Method for correcting permeability model of porous medium in dissociation process of gas hydrate, and method and system for determining permeability of hydrate-bearing porous medium, US202017015896.
[10] 侯健; 赵二猛; 刘永革等. Method for enhancing gas recovery of natural gas hydrate reservoir, US201916600842.
[11] 侯健; 赵二猛; 刘永革 等. Method for obtaining formation parameters of gas hydrate reservoir through well testing interpretation, US201916700239.
[12] 侯健; 陆努; 刘永革 等. Method for calculating daily gas production rate of methane hydrate deposit based on inflow performance relationship formulas, US202016884263.
[13] 侯健; 刘永革; 周康 等. Method used for exploiting natural gas hydrate reservoir, US201816215255.
[14] 侯健; 周康; 刘永革 等. Method for simulation of microscopic flow of pre-crosslinked gel suspension liquid in porous medium, US201815989861.
[15] 侯健; 赵二猛; 刘永革 等. 一种通过人工致密盖层提高天然气水合物藏采收率的方法, ZL201910496581.5.
[16] 侯健; 刘永革; 周康 等. 一种水平井分段射孔开发非均质天然气水合物藏的方法, ZL201810721969.6.
[17] 侯健; 白雅洁; 刘永革 等. 一种分段水平井热CO2吞吐开采非均质水合物藏的方法, ZL201710402535.5.
[18] 侯健; 刘永革; 周鹏 等. 一种利用流体循环方式动用地热能开采天然气水合物藏的方法, ZL201710573395.8.
[19] 侯健; 杜庆军; 宫汝祥 等. 一种用于复合热流体多井均质化注入的装置及方法, ZL201610246870.6.
[20] 侯健; 刘永革; 王文斌 等. 一种利用直井电加热辅助降压开采天然气水合物藏的方法, ZL201610285738.6.
[21] 侯健; 韦贝; 姚军 等. 一种考虑粗糙表面特征的岩石毛管力确定方法, ZL201510818606.0.
[22] 侯健; 刘永革; 杨勇 等. 一种聚合物驱相对渗透率曲线的测量方法, ZL201610024682.9.
[23] 侯健; 韦贝; 姚军 等. 一种考虑凹凸性的岩石孔隙网络模型的孔喉截面构造方法, ZL201510818657.3.







Baidu
map